586 research outputs found

    Accurate Ab-initio Predictions of III-V Direct-Indirect Band Gap Crossovers

    Full text link
    We report the compositional dependence of the electronic band structure for a range of III-V alloys. Density functional theory with the PBE functional is insufficient to mimic the electronic gap energies at different symmetry points of the Brillouin zone. The HSE hybrid functional with screened exchange accurately reproduces the experimental band gaps and, more importantly, the alloy concentration of the direct-indirect gap crossovers for the III-V alloys studied here: AlGaAs, InAlAs, AlInP, InGaP, and GaAsP.Comment: 3 pages, 2 figure

    Negative dynamic conductance from photon-assisted tunneling in superconducting junctions

    Get PDF
    We show that a superconductor-insulator-superconductor (SIS) junction may exhibit regions of negative dynamic conductance if it is irradiated by a time-varying signal source which deviates from the conventionally treated constant ac voltage limit. This phenomenon reflects the strong dependence of the junction absorption cross section upon dc bias voltage. Analytic estimates for the magnitude of the negative conductance and its impact upon the frequency down conversion process are obtained in the constant ac current limit

    Magnetic states and optical properties of single-layer carbon-doped hexagonal boron nitride

    Full text link
    We show that carbon-doped hexagonal boron nitride (h-BN) has extraordinary properties with many possible applications. We demonstrate that the substitution-induced impurity states, associated with carbon atoms, and their interactions dictate the electronic structure and properties of C-doped h-BN. Furthermore, we show that stacking of localized impurity states in small C clusters embedded in h-BN forms a set of discrete energy levels in the wide gap of h-BN. The electronic structures of these C clusters have a plethora of applications in optics, magneto-optics, and opto-electronics

    Relative stability of extended interstitial defects in silicon: First-principles calculations

    Get PDF
    Interstitials stored in {311} or {111} habit planes form rows of interstitial chains elongated in ⟨011⟩ direction. Exploiting the large aspect ratio to treat chains as infinite, first-principles calculations of large computation supercells reveal a unique formation energy trend for each defect, which is closely correlated with its distinct shape. The most energetically favorable structure changes from {311} rodlike defects to Frank loops as the number of interstitials in the defect increases. These results are consistent with transmission electron microscopy studies

    The Role Of Sentencing Guideline Amendments In Reducing Unwarranted Sentencing Disparity

    Full text link

    Effects of morphology on phonons of nanoscopic silver grains

    Get PDF
    The morphology of nanoscopic Ag grains significantly affects the phonons. Atomistic simulations show that realistic nanograin models display complex vibrational properties. (1) Single-crystalline grains. Nearly-pure torsional and radial phonons appear at low frequencies. For low-energy, faceted models, the breathing mode and acoustic gap (lowest frequency) are about 10% lower than predicted by elasticity theory (ET) for a continuum sphere of the same volume. The sharp edges and the atomic lattice split the ET-acoustic-gap quintet into a doublet and triplet. The surface protrusions associated with nearly spherical, high-energy models produce a smaller acoustic gap and a higher vibrational density of states (DOS) at frequencies \nu<2 THz. (2) Twined icosahedra. In contrast to the single-crystal case, the inherent strain produce a larger acoustic gap, while the core atoms yield a DOS tail extending beyond the highest frequency of single-crystalline grains. (3) Mark's decahedra, in contrast to (1) and (2), do not have a breathing mode; although twined and strained, do not exhibit a high-frequency tail in the DOS. (4) Irregular nanograins. Grain boundaries and surface disorder yield non-degenerate phonon frequencies, and significantly smaller acoustic gap. Only these nanograins exhibit a low-frequency \nu^2 DOS in the interval 1-2 THz.Comment: Version published in Phys. Rev.
    corecore